
CS193p

Winter 2017

Stanford CS193p
Developing Applications for iOS


Winter 2017



CS193p

Winter 2017

Today
Autolayout

Review
Size Classes
Demos



CS193p

Winter 2017

Autolayout
You’ve seen a lot of Autolayout already

Using the dashed blue lines to try to tell Xcode what you intend
Reset to Suggested Constraints (if the blue lines were enough to unambiguously set constraints)
Size Inspector (look at (and edit!) the details of the constraints on the selected view)
Clicking on a constraint to select it then bring up Attributes Inspector (to edit its details)

What else?
Ctrl-dragging can be done between views, not just to the edges
There are “pin” and “arrange” menus in the lower right corner of the storyboard
Document Outline is the place to go to resolve conflicting constraints

Mastering Autolayout requires experience
You just have to do it to learn it

Autolayout can be done from code too
Though you’re probably better off doing it in the storyboard wherever possible



CS193p

Winter 2017

Autolayout
What about rotation?

Sometimes rotating changes the geometry so drastically that autolayout is not enough
You actually need to reposition the views to make them fit properly

Calculator
For example, what if we had 20 buttons in a Calculator?
It might be better in Landscape to have the buttons 5 across and 4 down
Versus in Portrait have them 4 across and 5 down

View Controllers might want this in other situations too
For example, your MVC is the master of a side-by-side split view
In that case, you’d want to draw just like a Portrait iPhone does

The solution? Size Classes
Your View Controller always exists in a certain “size class” environment for width and height
Currently this is either Compact or Regular (i.e. not compact)



CS193p

Winter 2017

Autolayout
iPhone

iPhones in Portrait are Compact in width and Regular in height
But in Landscape, most iPhones are treated as Compact in both dimensions

iPhone 6+ and 7+
The iPhone Plus in Portrait orientation is also Compact in width and Regular in height
But in Landscape, it is Compact in height and Regular in width

iPad
Always Regular in both dimensions
An MVC that is the master in a side-by-side split view will be Compact width, Regular height

Extensible
This whole concept is extensible to any “MVC’s inside other MVC’s” situation (not just split view)
An MVC can find out its size class environment via this method in UIViewController …
let mySizeClass: UIUserInterfaceSizeClass = self.traitCollection.horizontalSizeClass
The return value is an enum .compact or .regular (or .Unspecified).



CS193p

Winter 2017

Size Classes
Compact Width

Compact Height

Regular Width

Regular Height

iPhones (non-Plus)

 in Landscape

iPhone Plus 

in Landscape

iPhones

in Portrait


or

Split View Master

iPads

Portrait


or

Landscape



CS193p

Winter 2017

Size Classes
Compact Width

Compact Height

Regular Width

Regular Height



CS193p

Winter 2017

Size Classes
Compact Width

Compact Height

Regular Width

Regular Height

Any Width

Any Height



CS193p

Winter 2017

Demo
Calculator

Let’s make our Calculator adjust to the size class environment it’s in


